On jets, extensions and characteristic classes II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary Characteristic Classes of Lie Algebra Extensions

We introduce a notion of secondary characteristic classes of Lie algebra extensions. As a spin-off of our construction we obtain a new proof of Lecomte’s generalization of the Chern–Weil homomorphism.

متن کامل

Cohomology of Split Group Extensions and Characteristic Classes

There are characteristic classes that are the obstructions to the vanishing of the differentials in the Lyndon-Hochischild-Serre spectral sequence of an extension of an integral lattice L by a group G. These characteristic classes exist in the r-th page of the spectral sequence provided differentials di = 0 for all i < r. If L further decomposes into a sum of G-sublattice L = L ⊕ L, we show tha...

متن کامل

Groupoid extensions, principal 2-group bundles and characteristic classes

We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2-group [G → Aut(G)]bundles over Lie groupoids (i.e. [G → Aut(G)]-bundles over differentiable stacks) and, on the other hand, centralG-extensions of Lie groupoids (i.e. Ggerbes over differentiable stacks). We also introduce universal characteristic classes for 2-group bundle...

متن کامل

Exercises on characteristic classes

1. a) Compute the Stiefel-Whitney classes of the tangent bundle of RP . (Use the method from class for the tangent Chern classes of complex projectives spaces.) b) Conclude that if the tangent bundle is trivial, then n = 2 − 1 for some m. (In fact n must be 0, 1, 3, 7, but this is much harder to prove; one proof uses the Bott periodicity theorem.) c) Deduce (very easily!) a complete characteriz...

متن کامل

Characteristic Classes on Grassmann Manifolds

In this paper, we use characteristic classes of the canonical vector bundles and the Poincaré dualality to study the structure of the real homology and cohomology groups of oriented Grassmann manifold G(k, n). Show that for k = 2 or n ≤ 8, the cohomology groups H∗(G(k, n),R) are generated by the first Pontrjagin class, the Euler classes of the canonical vector bundles. In these cases, the Poinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2012-11412-1